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Vaccination is one of the greatest triumphs of modern medicine, yet we remain largely ignorant of the mech-
anisms by which successful vaccines stimulate protective immunity. Two recent advances are beginning to
illuminate such mechanisms: realization of the pivotal role of the innate immune system in sensing microbes
and stimulating adaptive immunity, and advances in systems biology. Recent studies have used systems
biology approaches to obtain a global picture of the immune responses to vaccination in humans. This
has enabled the identification of early innate signatures that predict the immunogenicity of vaccines, and
identification of potentially novel mechanisms of immune regulation. Here, we review these advances
and critically examine the potential opportunities and challenges posed by systems biology in vaccine
development.
‘‘We are drowning in a sea of data and thirsting for knowl-

edge. Most biology today is low input, high throughput, no

output biology.’’ Sydney Brenner

‘‘We must make this the decade of vaccines.’’ Bill Gates

Introduction
In the epic saga of the evolutionary struggle between microbes

and humans, the invention of vaccination is a defining moment,

one that represents the victory of our wits over their genes. Iron-

ically, however, despite the common origins of vaccinology and

immunology in the pioneering work of giants such as Pasteur

and Jenner, the two disciplines have evolved such different

trajectories that immunologists remain largely ignorant about

the mechanisms of action of successful vaccines (empirically

made), and vaccinologists have, until recently, displayed little

interest in the intricacies of immune regulation. Understanding

the immunological mechanisms of vaccination, however, is of

paramount importance in the rational design of future vaccines

against pandemics such as HIV, malaria, and tuberculosis and

against emerging infections. Recent advances in our under-

standing of the innate immune system and the use of systems

biological approaches are beginning to reveal the fundamental

mechanisms by which the innate immune system orchestrates

protective immune responses to vaccination (Pulendran and

Ahmed, 2006; Steinman, 2008). The innate immune system is

capable of sensing viruses, bacteria, parasites, and fungi

through the expression of so-called pattern recognition recep-

tors (PRRs), which are expressed by dendritic cells (DCs) and

other cells of the innate immune system (Reviewed by Coffman,

et al. [2010], this issue of Immunity). Toll-like receptors (TLRs)

represent the most studied family of PRRs (Iwasaki and Medzhi-

tov, 2010; Kawai and Akira, 2010). However, other non-TLR

families of innate receptors, such as C type lectin-like receptors

(Geijtenbeek and Gringhuis, 2009), nucleotide-binding oligomer-

ization domain-like receptors (Ting et al., 2010), and retinoic

acid-inducible gene I (RIG-I)-like receptors (Wilkins and Gale,

2010), also play critical roles in innate sensing of pathogens

and induction of inflammatory responses. Emerging evidence

suggests that the nature of the DC subtype, as well as the

particular PRR triggered, plays a critical role in modulating
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the strength, quality, and persistence of adaptive immune

responses (Pulendran and Ahmed, 2006; Steinman, 2008).

Such insights about the molecular basis of immune regulation

have accrued largely through the traditional scientific method

of hypothesis creation, and experimental validation, particularly

through the reductionist approaches of molecular biology.

However, as powerful as such approaches are, they offer

a very limited view of complex biological systems. Thus, there

are estimated to be more than 26,000 genes in our genomes,

and entry of a vaccine or a pathogen into the body perturbs

the expression of a substantial fraction of them. Systems biolog-

ical tools offer us a solution to this problem. In vaccinology,

recent studies have highlighted the use of such approaches in

offering a global picture of the biological response to a vaccine.

Here we highlight these advances and discuss their potential

importance. This review is divided into four parts. In the first

part (Biology of the 21st Century), we provide a broad overview

of systems biology, its goals and challenges, and highlight the

features that distinguish it from reductionistic biology. Next,

(in Systems Biology in Vaccinology) we review recent studies

that have applied systems biological approaches to vaccinology

and suggest key areas where such approaches may impinge

on vaccine development. These include identification of poten-

tially novel correlates of immunity, predicting the efficacy of

vaccines, accelerating the clinical trial platform of vaccines,

and learning new biological insights about immune regulation.

In part three (Low-Input, High-Throughput, No Output Biology),

we critically examine the challenges and potential pitfalls of

systems biological approaches. Finally (in A Framework for

Systems Vaccinology), we conclude by offering a conceptual

framework of how systems approaches can guide vaccine

design and development.

Biology of the 21st Century
Two of the greatest scientific achievements of the 20th century

were the discovery of the structure of DNA and the sequencing

of the human genome. The grand challenge for biology andmedi-

cine at the turn of the 21st century is to understand the biological

complexity that emerges from interactionsbetweenourgenomes
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and the environment. We are uniquely poised to tackle this

challenge of biological complexity by the convergence of a new

intellectual framework (a systems rather than a reductionistic

view) and new technologies (for measuring and visualizing the

behavior of genes, molecules, cells, organs, and organisms),

coupled with the innovation of computational and mathematical

tools for dealing with complex data sets. The convergence of

these disparate threads offers us an unprecedented opportunity

to understand the fundamental features of life—from a holistic

rather than solely reductionistic; from a predictive rather than

descriptive; in short, from a systems biological viewpoint.

Systems biology is an interdisciplinary approach that system-

atically describes the complex interactions between all the

parts in a biological system, with a view to elucidating new bio-

logical rules capable of predicting the behavior of the biological

system (Kitano, 2002). Although reductionist molecular biology

works by isolating and characterizing each component of the

system (e.g., a gene, a protein, or a cell type), systems biology

focuses on studying the structure and dynamics of the whole

system (Kitano, 2002). Under different types of perturbation,

data are collected from all the components of a biological

system, analyzed, and integrated in order to generate a mathe-

matical model that describes or predicts the response of the

system to individual perturbations (Ideker et al., 2001). A key

goal of systems biology is to understand the nature of biological

networks, which access, integrate, and communicate informa-

tion from the genome to the environment, and back (Ideker

et al., 2001; Kitano, 2002). These networks represent, in a

sense, the lowest functional units of life processes, such as

development, disease, immunity, and aging. Therefore, under-

standing these life processes requires understanding the nature

and behavior of these networks, both their robustness and

plasticity, in the face of a dynamic environment. What is needed

to delineate these networks is the acquisition of high-

throughput data on the genes, mRNAs, microRNAs, and

proteins that constitute the networks. Systems biology capital-

izes on several so-called ‘‘omic’’ technologies that are used to

define and monitor all the components of the systems. DNA mi-

croarrays and high-throughput sequencing can be applied to

identify global differences on gene expression (transcriptomics),

genomic rearrangements, and genetic polymorphisms (geno-

mics) as well as to provide a high-resolution global map

of protein-DNA interactions (chromatin immunoprecipitation

followed by DNA sequencing or hybridization to the array).

Other enabling technologies include modern mass spectrom-

etry (powering proteomics, lipidomics, and metabolomics),

yeast two-hybrid system (mapping protein interactions), and

genome-wide RNA interference screening (identifying genes

required for a process). In addition, systems biology features

the integration and modeling the huge amount of data gener-

ated by high-throughput techniques. An array of computational

methods has been developed in the context of systems biology,

and data integration and network inference are of special

interest (Bansal et al., 2007; Hyduke and Palsson, 2010). Such

methods can be closely coupled with experimental studies to

generate testable hypotheses and improve the understanding

of molecular mechanisms.

Systems biological approaches have changed prognosis and

therapy response prediction in oncology (Alizadeh et al., 2000;
Sørlie et al., 2001) and are beginning to be applied to under-

standing mechanisms of innate and adaptive immunity (Aderem

and Hood, 2001; Germain, 2001; Gilchrist et al., 2006; Haining

et al., 2008; Haining andWherry, 2010; Kaech et al., 2002;Wherry

et al., 2007; Zak and Aderem, 2009), in identifying diagnostic

biomarkers of different infections (Chaussabel et al., 2008; Lee

et al., 2008; Otaegui et al., 2009; Ramilo et al., 2007), and autoim-

munity (Pascual et al., 2010). Systemsbiological approaches also

offer unprecedented opportunities to study immune responses in

humans (Aderem and Hood, 2001; Germain, 2001). However,

only recently have they started to be applied to vaccinology.

There are two broad applications of systems approaches in vac-

cinology: prediction of immunogenicity and efficacy of vaccines

and scientific discovery. These two areas use distinct methodol-

ogies and have different rationales and output, and they are dis-

cussed below.

Systems Biology in Vaccinology
One potential application of systems biology in vaccinology is in

predicting vaccine efficacy.

The identification of molecular signatures (e.g., patterns of

gene expression induced after vaccination), induced rapidly in

the blood after vaccination that correlate with and predict the

later development of protective immune responses, represents

a strategy to prospectively determine vaccine efficacy. In the

field of cancer genomics, predictions of cancer outcome have

been based on gene expression profiles of the cancer cells

themselves (see Box 1). However, in the human immune system,

there is no analogous single tissue fromwhich to sample cells for

dissecting biology and creating predictors. The immune system

spansmultiple lineages, is anatomically distributed, and is highly

interregulated. Sampling all these cellular components and

assaying their gene expression profiles is obviously not feasible.

However, two critical features of the immune response provide

the rationale for applying genomic approaches to study the

response to vaccines. First, cells of the immune system are

easily accessible in peripheral blood samples. Each blood

sample provides a snapshot of many lineages and dozens of

differentiation states within the immune system. Moreover,

because migration and trafficking is a central and ongoing

feature of the immune response, peripheral blood leukocytes

represent recent emigrants of peripheral tissues, including

vaccine sites. Second, cells of the immune system are uniquely

sensitive to perturbation. As discussed below and as we (Querec

et al., 2009) and others (Gaucher et al., 2008) have demon-

strated, individuals who have been vaccinated manifest marked

and characteristic changes in the gene expression profiles of

their peripheral blood leukocytes. Thus, the population of

immune cells in the peripheral blood provides a sensitive bell-

wether of localized or systemic immunologic events.

The first examples of studies using systems biological tools to

understand vaccine-induced immune responses came from two

independent studies that identified early molecular signatures

induced in humans vaccinated with the yellow fever vaccine

YF-17D (Gaucher et al., 2008; Querec et al., 2009). YF-17D is

a live attenuated vaccine, which was generated after serial

passage of a corresponding pathogenic strain (Asibi strain) of

the yellow fever virus (Theiler and Smith, 1937) and is one of

themost successful vaccines ever developed because it confers
Immunity 33, October 29, 2010 ª2010 Elsevier Inc. 517
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protection in nearly 90% of vaccinees. Over 600 million people

have received this vaccine and a single immunization results in

a broad spectrum of immune responses (neutralizing antibodies,

cytototoxic T cells, and T helper 1 (Th1) and Th2 cells) and

neutralizing antibody responses that persist for nearly 4

decades. The goal of our study (Querec et al., 2009) was to

use YF-17D as a model to determine the feasibility of applying

systems biological approaches (1) to identify molecular signa-

tures induced early after vaccination, which could predict the

later immunogenicity of the vaccine (i.e., to identify biomarkers

of vaccine efficacy) and (2) to obtain biological insights about

the mechanism of action of YF-17D. Fifteen individuals who

had previously not been vaccinated with YF-17D or infected

with yellow fever (and were thus immunologically naive to the

vaccine or pathogen) were vaccinated, and blood samples

were isolated at baseline and at various time points after vacci-

nation and analyzed with respect to several immunological

parameters. There was a striking variation in the magnitude of

the antigen-specific CD8+ T cell responses, and the neutralizing

antibody titers measured at day 15 or 60, between different indi-

viduals (Querec et al., 2009). We then measured cytokine induc-

tion in the plasma using a multiplex cytokine assay, and the

frequencies and activation status of innate immune cells such

as DC and monocyte subsets at days 1, 3, or 7 after vaccination,

but these measurements did not correlate with the later T cell or

antibody responses. Microarray analyses using the Affymetrix
518 Immunity 33, October 29, 2010 ª2010 Elsevier Inc.
Human Genome U133 Plus 2.0 array of

total peripheral blood mononuclear cells

(PBMCs) revealed a molecular signature

comprised of genes involved in innate

sensing of viruses and antiviral immunity

inmost of the vaccinees. Thus, in addition

to enhanced expression of endosomal

TLRs, the gene expression of members

of the 20,50-oligoadenylate synthetase

family (e.g., OAS 1,2,3 and L, which are

essential proteins involved in the innate

immune response to viral infection),

DDX58 (RIG-I), and IFIH1 (MDA-5) were

all upregulated (Figure 1). Two key tran-

scription factors that mediate type I inter-

feron responses, IRF7 and STAT1, were

also upregulated. Members of the ISGy-

lation pathway, which preserve essential

proteins from being degraded during the

IFN-induced cellular antiviral state, were

increased, including ISG15, HERC5, and

UBE2L6. Another PRR group where

both positive and negative regulation is

induced by YF-17D is in the complement

cascade. The complement signature of

YF-17D included the upregulation of

genes for C1q and its feedback inhibitor

C1IN and the increased expression

of the gene-encoding C3a receptor 1

with corresponding increase in the C3a

protein in plasma (Figure 1). Thus YF-

17D activates multiple pathogen surveil-

lance mechanisms in several cellular
compartments: extracellular, cell membrane, cytoplasmic, and

vesicular (Figure 1). However, these signatures did not correlate

with the magnitude of the antigen-specific CD8+ T cell or anti-

body responses.

We then used additional bioinformatics approaches to identify

gene signatures that did correlate with themagnitude of antigen-

specific CD8+ T cell responses and antibody titers and that were

capable of predicting the magnitude of these responses in

an independent trial of YF-17D vaccination in humans. We

observed that signatures for CD8+ T cell responses from the first

trial were predictive with up to 90% accuracy in the second trial

and vice versa. Of the genes present in these predictive signa-

tures, EIF2AK4 is known to be a critical player in the integrated

stress response (Wek et al., 2006) and regulates protein

synthesis in response to changes in amino acid levels by phos-

phorylating the elongation initiation factor 2 (eIF2a) (Figure 1).

This results in a global shutdown of translation of constitutively

active proteins by redirection of their mRNAs from polysomes

to discrete cytoplasmic foci known as stress granules (SGs),

where they are transiently stored (Kedersha and Anderson,

2007). Consistent with this, YF-17D induced the phosphorylation

of eIF2a and formation of stress granules (Querec et al., 2009).

Moreover, several other genes involved in the stress response

pathway, like calreriticulin, protein disulfide isomerase, the glu-

cocorticoid receptor, and c-Jun, were observed to correlate

with the CD8+ T cell response (Figure 1). These observations



low high

Trial 1 Trial 2

Innate
genomic
signature 

CD8+ T cell
response

Antibody
response

Early gene signatures
that correlate with T cell
or antibody response

Prediction
model
(e.g. DAMIP)

YF17D YF17D

Test predictive capacity
of rules on indepoendent
trial 2

A
B
C

A
D
E

B
F
G

Antibody or T cell response
predictive rules

Focused gene list
or predictive rules

Days Days

0 3 7 15 60 - 90 0 3 7 15 60 - 90

Figure 1. Using Systems Biology to Predict the Immunogenicity of the YF-17D Vaccine
Schematic representation of the systems biology approach used to predict the T and B cell responses of YF-17D vaccinees (Querec et al., 2009). Healthy humans
vaccinated with YF-17D are bled at the indicated time points and the innate and adaptive responses studied. Innate signatures obtained with microarrays are
found to correlate with the later adaptive immune responses. The predictive power of such signatures is tested in an independent trial (trial 2).
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stimulate the hypothesis that the induction of the integrated

stress response in the innate immune system might play a key

role in shaping the CD8+ T cell response to YF-17D. Experiments

to test the hypothesis are currently underway. In the case of anti-

body responses, TNFRSF17 (BCMA), a receptor for the B cell

growth factor BLyS or BAFF (known to play a key role in B cell

differentiation) (Avery et al., 2003), was a key gene in the predic-

tive signatures. Thus, taken together, these studies provide a

global description of the innate and adaptive immune responses

that are induced after YF17D vaccination and stimulate the

generation of testable hypotheses about the biological mecha-

nisms that regulate the magnitude and nature of the immune

response to YF-17D (Figure 1).

The utility of such an approach in predicting the immunoge-

nicity and protective efficacy of other vaccines needs to be

determined. The question of whether the signatures that predict

the T and B cell responses to YF-17D can also predict such

responses to other vaccines remains to be determined. In one

scenario, it could be envisioned that all vaccines that stimulate

antibody responses would induce a common archetypal signa-

ture, capable of predicting the magnitude of the antibody

response to any vaccine. Similarly, there could be an archetypal

signature that predicts the antigen-specific CD8+ T cell

responses to any vaccine. However, B and T cell responses

come in different flavors, and different vaccines induce different

types of B and T cell responses. It seems unlikely, therefore, that

a common archetypal signature would be capable of predicting

all the different types of B or T cell responses induced by different

vaccines. A second scenario is that each vaccine could have

a very unique signature, which was capable of predicting the

particular type of T or B cell responses only to that vaccine.

However, many vaccines induce similar types of immune
responses (e.g., neutralizing antibodies or polyfunctional CD8+

T cells), so it is reasonable to suggest that vaccines that stimu-

late a similar mechanism of protective immunity will induce

similar molecular signatures. For example, vaccine Y that stimu-

lates long-lived plasma cells that produce high-affinity antibody

may stimulate a particular signature, whereas vaccine Z that

induces polyfunctional CD8+ T cells would stimulate a different

signature (Figure 2). Vaccine X that induced both types of

responses would stimulate a combined signature (Figure 2).

Other vaccines that relied on opsonophagocytic antibodies for

protection may have a different innate signature. Thus, one

would have a cluster of signatures that predict various aspects

of B cell immunogenicity or T cell immunogenicity. Similarly,

there could be a different cluster of signatures that predict

protective immunity that is not mediated by T or B cell-depen-

dent mechanisms, but by other mechanisms mediated perhaps

by NK cells, DCs, or stress response pathways (Figure 2). In this

context, our preliminary data with the influenza vaccines suggest

that TNFRSF17, which was a key predictor of the neutralizing

antibody responses to YF-17D (Querec et al., 2009), is also

a predictor of the hemagglutinin antibody titers to vaccination

with the inactivated influenza vaccine, suggesting that there

are likely to be common predictors of antibody responses to

many vaccines (unpublished data). This probably underlies

common biological mechanisms by which different vaccines

could stimulate antibody responses. The identification of such

predictive signatures will facilitate not only the rapid screening

of vaccines and the development of a vaccine chip, comprising

clusters of a few hundred or fewer genes, each cluster being

capable of predicting a facet of immunogenicity (Figure 2B).

Such a chip would therefore be used to predict the immunoge-

nicity of virtually any vaccine. Indeed, in the field of cancer
Immunity 33, October 29, 2010 ª2010 Elsevier Inc. 519
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Figure 2. Construction of a Generic Vaccine Chip
(Top) Systems biology approaches allow the identification of predictive gene signatures of immunogenicity for many vaccines. Vaccines with similar correlates of
protection may or may not share the same genemarkers. The identification of predictive signatures of many vaccines would enable the development of a vaccine
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vaccine. Thus, the vaccine chip is a device that could be used to predict immunogenicity and protective capacity of virtually any vaccine in the future.
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genomics, after several years of false starts, MammaPrint (http://

www.agendia.com), a prognostic chip for breast cancer, was

developed by Agendia and approved by the Food and

Drug Administration in the United States. Like the story behind

this breast cancer prognostic chip, the development of the

vaccine chip will probably require the analysis of hundreds of

vaccinees over several clinical trials. However, we have already

seen how host gene expression profiles induced after vaccina-

tion correlate with, and predict, vaccine immunogenicity and

also offer mechanistic insights into immune regulation (Querec

et al., 2009). This additional layer of knowledge, translated into

an array of functional modules on the vaccine chip, gives us extra

power that was not utilized in the earlier, brute-force biomarker

hunting.

This is likely to have an impact on several public health-related

issues in vaccinology. One major issue is that many common

vaccines such as the influenza vaccine (Gardner et al., 2006),

pneumococcal vaccine (Jackson and Janoff, 2008), and zoster

vaccines induce suboptimal immune responses in a substantial

proportion of the elderly, in infants, or in immunocompromised

populations such as HIV-infected or transplant patients. There-

fore, delineation of signatures of immunogenicity would permit

such individuals to be identified prospectively. In addition, this

strategy will help identify nonresponders when vaccinating first

responders during an emerging outbreak or when evaluating

the efficacy or immunogenicity of untested vaccines (Table 1).

Furthermore, the predictive signatures could highlight novel

correlates or protective immunity and enable the formulation of
520 Immunity 33, October 29, 2010 ª2010 Elsevier Inc.
new hypotheses about the mechanisms underlying vaccine-

induced protective immunity.

Systems biology may also be useful in addressing a major

challenge in vaccine development: to determine the correlates

of protection against a pathogen. The magnitude of the antigen-

specific antibody titers is considered to be the primary correlate

of protection against most pathogens (Plotkin, 2008) (Table 1).

For example, antibodiesmediate protection against blood-borne

viruses such as hepatitis (Jack et al., 1999; Van Damme and Van

Herck, 2007) and yellow fever (Lang et al., 1999; Reinhardt et al.,

1998; Wheelock and Sibley, 1965); bacteria that secrete toxins

that cause diphtheria (Ipsen, 1946) and tetanus (Looney et al.,

1956); viruses that infect via mucosal surfaces such as influenza

(Dowdle et al., 1973; Mostow et al., 1973) and rotaviruses (Jiang

et al., 2008); rabies virus (Nagarajan et al., 2008), which infect

neuronal axons; and pneumococcal and meningococcal

bacteria, which are leading causes of pneumonia and meningitis

(Andreoni et al., 1993; Romero-Steiner et al., 2006). The antigen-

specific antibody responses to such vaccines are measured

through standardized assays such as ELISAs (which measure

binding antibody titers), hemagglutination inhibition, and func-

tional measures of antibody activity such as neutralization and

opsonophagocytosis (Table 1). Typically, such assays yield

a single value, a threshold, above which antibody responses

are considered to be protective.

However, despite thewidespread use of such antibody assays

to measure the efficacy of current vaccines, in the case of many

vaccines humoral immunity may not be the only, or even the

http://www.agendia.com
http://www.agendia.com


Table 1. Methods to Measure Antibody Correlates of Protection

Vaccine (Pathogen) Test

Correlate of

Protection

Diphtheria

(C.diphtheriae)

Toxin neutralization 0.01–0.1 IU/ml

Hepatitis A ELISA 10 mlU/ml

Hepatitis B ELISA 10 mlU/ml

Hib polysaccharide (Hib) ELISA 1 mg/ml

Hib conjugate (Hib) ELISA 0.15 mg/ml

Influenza HAI 1/40 dilution

Lyme disease ELISA 1100 EIA U/ml

Measles Microneutralization 120 mlU/ml

Pneumococcus

(S. pneumoniae)

ELISA;

opsonophagocytosis

0.2–0.35 mg/ml

(for children);

1/8 dilution

Polio Neutralization 1/4–1/8 dilution

Rabies Neutralization 0.5 IU/ml

Rubella Immunoprecipitation 10–15 mlU/ml

Tetanus Toxin neutralization 0.1 IU/ml

Chickenpox (VZV) FAMA; gpELISA R1/64 dilution;

R5 IU/ml

Historically, correlates of protection have relied on the measurement of

the magnitude of the antigen-specific antibody response stimulated by

vaccination. Such measurements typically include the concentration of

the binding antibody titers (ELISA) or some measure of the activity of

the antibody, such neutralization titers or opsonophagocytic titers.

When a given threshold of such a measurement is achieved or exceeded,

vaccination is assumed to have reached a signature of protective immu-

nization. These tests have become well standardized and relatively

straight forward to perform. The name of the pathogen is included in

parenthesis, where its name is different from the commonly used name

for the vaccine. The following abbreviations are used:C. diphtheria,Cory-

nebacterium diphtheriae; Hib,Haemophilus influenza type B; S. pneumo-

niae, Streptococcus pneumonia; HAI, hemagglutination inhibition; EIA,

enzyme immunoassay; FAMA, fluorescent antibody to membrane anti-

gens; gpELISA, glycoprotein antibody ELISA; VZV, varicella zoster virus.

Adapted from Plotkin (2008).
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best, correlate of protection. Furthermore, protective immunity

may not even correlate with the humoral immune response. Vari-

cella virus vaccination efficacy is usually determined by

measuring antibody titers with serum neutralization or ELISA.

However, persistent varicella-specific T cells have been shown

to be indicators of protection from varicella virus infection and

have been suggested as possible additional or alternative corre-

lates of protection in children and the elderly (Arvin, 2008; Levin

et al., 2008). Furthermore, antibody titers to influenza vaccination

may be unreliable for predicting risk of influenza illness in the

elderly population (McElhaney et al., 2006). On the contrary,

elderly individuals that have strong influenza-specific T cell

responses are less likely to develop flu regardless of postvacci-

nation antibody titers (McElhaney et al., 2006). Although anti-

body titers could not distinguish between elderly subjects that

did or did not develop flu, those subjects with high IFN-g:IL-10

ratios following ex vivo stimulation of PBMCs with live influenza

preparations were more likely to be protected from influenza

illness (McElhaney et al., 2006). In addition, patients with high

frequencies of CMV-specific T cells are less likely to have reac-
tivation of CMV when they are placed on immunosuppressive

drugs to prevent transplant rejection (Bunde et al., 2005; Sester

et al., 2001). In fact, many diseases that are a top priority for

vaccine development, such as HIV, TB, andmalaria, are believed

to require strong T cell responses for protection (Hoft, 2008;

Pantaleo and Koup, 2004; Reyes-Sandoval et al., 2009). These

realizations have led to interest in measuring T cells as correlates

of protection.

However, measuring the functional signature of the T cell

response as a correlate of protection is more challenging than

assessing antibody titers. First, T cell populations are phenotyp-

ically and functionally diverse (e.g., CD8+ T cell, CD4+, effector

memory, central memory, Th1, Th2, and Th17 cells, etc.). Vacci-

nation can induce the proliferation and differentiation of antigen-

specific T cells into effector cells that secrete cytokines such as

IFNg, IL-4, IL-17, IL-10, IL-9, or effectormemory cells and central

memory cells, all of which play key roles in mediating short- and/

or long-term protective immunity to the pathogen (Harari et al.,

2004; Sallusto et al., 1999) (Sallusto, et al. [2010], this issue of

Immunity). Recent studies have monitored activated T cells in

humans phenotypically by measuring upregulation of CD38

and HLA-DR or peptide-MHC tetramer-staining cells (Akondy

et al., 2009; Appay et al., 2002; Callan et al., 1998; Morgan

et al., 2008). Differentiation into effector and memory pheno-

types can be assessed by the expression of markers such as

CD45RA, CD62L, CD127, and CCR7 (Akondy et al., 2009; Appay

et al., 2002; Callan et al., 1998; Morgan et al., 2008). However,

the frequencies of differentiated T cell phenotypes may not be

adequate correlates of protection, because these may not

necessarily correlate with their functional activity. The functions

of T cells can be dependent on the cytokines they secrete

(e.g., IFN-g, IL-2, and TNF-a) or production of perforin, as well

as other measures of cell proliferation and cell-mediated cyto-

toxicity. Thus, there are a variety of T cell functional signatures

that can be measured as potential correlates of protection in

lieu of the traditional antibody response. Importantly, the assess-

ment of a single parameter of T cell function (e.g., IFNg secretion)

may not be sufficient as a correlate of protection; however, using

a functional signature comprised of two or more types of

measurementsmay providemore specific and reliable correlates

of protection (Harari et al., 2004). Finally, it may be necessary to

abandon the simple linear functional signature model developed

for antibody titers where a predetermined threshold is used as

a correlate. Instead of using a set threshold of a single variable

to determine vaccine efficacy, so called cocorrelates of protec-

tion may be more appropriate where it is the balance among

multiple variables that indicates efficacy (Qin et al., 2007). For

instance, protection against a pathogen may be achieved

when two conditions are satisfied: (1) the frequency of Th1

CD4+ effector memory cells meets a given threshold and (2)

themagnitudeof the neutralizing antibody titers reaches a certain

threshold. In individuals in whom the thresholds for each of

these conditions are not met, it may be the interaction between

various cocorrelates, and not independent levels of each, that

provides a functional signature of vaccine efficacy. For instance,

in the control of viruses or intracellular pathogens, the lower the

neutralizing antibody titer induced by a vaccine, the higher the

cytotoxic T cell response needs to be to enhance the likelihood

of protection.
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Figure 3. Integrating Systems Biology Approaches into Clinical Trials
(Top) For vaccines for which correlates or protection are known (Table 1), systems approaches can be used to identify early signatures of protection in a phase 1
trial. The key genes from these signatures can be incorporated into a vaccine chip or ELISA kit, which can then be used to identify nonresponders or suboptimal
responders, particularly in special populations such as immunocompromised patients, the elderly, and infants. (Bottom) For new and emerging vaccines, for
which correlates of protection are unknown, signatures that predict various aspects of immunogenicity (e.g., CD8+ T cell responses or neutralizing antibody
responses) can be assessed in phase I trials. Such signatures can then be incorporated into a vaccine chip or ELISA kit that can then be used in phase II and
III trials to determine their capacity to predict protection. Alternatively, a retrospective nested case-control study could be done in a phase II and III trial to identify
signatures of protection.
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The notion that the innate immune response to vaccination

might represent a viable correlate or protection has only recently

been considered. Given the pivotal role of the early innate

response in regulating the magnitude, quality, and duration of

the later adaptive immune responses (Iwasaki and Medzhitov,

2010), specific signatures of innate activation may indicate that

the vaccine induced the appropriate quality and sufficient

strength of activation to induce protective acquired immunity.

As discussed above, it has been shownwith yellow fever vaccine

17D that molecular signatures in the blood 3 to 7 days after

vaccination, corresponding with vaccine viremia and activation

of the innate immune pathways, may be used to predict the

peak frequency of activated virus-specific T cells and long-

term neutralizing antibody titers (Querec et al., 2009).

How can systems approaches be integrated into the clinical

trial framework to identify correlates of protective immunity? At

the outset, it is important to clarify a frequent source of confusion

that arises regarding correlates of immunogenicity versus corre-

lates of protection. The ultimate goal is of course to determine

vaccine-induced signatures a few hours or days after vaccina-

tion that can predict whether a given individual will develop

long-term protective immunity against the pathogen. The most

logical way of addressing this goal is to perform a clinical trial

in which vaccinated humans can be challenged with the path-

ogen and then to identify signatures that would discriminate

between those vaccinees who succumbed to the infection
522 Immunity 33, October 29, 2010 ª2010 Elsevier Inc.
versus those who were protected. With very rare exceptions,

as in the case of malaria vaccine trials (Vahey et al., 2010),

such an approach is clearly untenable ethically and thus alterna-

tive approaches must be considered. One alternative approach

is to use animal challenge models in which vaccines can be eval-

uated. Such models, such as the nonhuman primate model for

HIV or the ferret model for influenza have greatly accelerated

vaccine discovery and offeredmuch insight into themechanisms

of protection (Sui et al., 2010). However, in some cases, opinions

vary regarding the relative merits of a given model and how to

translate results obtained from such a model into the clinic

(Morgan et al., 2008). Therefore, an alternative or even comple-

mentary approach is to identify signatures of immunogenicity

to the vaccine in humans. This approach relies on the axiom

that immune protection against a pathogen is mediated by one

or more components of the immune response, which can

broadly be divided into the adaptive (antigen-specific B and

T cells) and the innate responses. Therefore, if there was a priori

knowledge of precisely which component(s) of the immune

response (e.g., a combination of persistent neutralizing antibody

responses and memory CD8+ T cells that migrate to mucosal

tissues), then it becomes relatively straightforward to conduct

a phase 0 or 1 clinical trial (similar to the yellow fever vaccine

trials) in which early predictive signatures of such responses

can be identified (Figure 3). Such signatures can then be applied

in the clinic to identify vaccinees who will respond suboptimally



Immunity

Review
to the vaccine. But how do we know what types of immune

responses are necessary for protection? In many cases, we

can be guided bymore than a century of immunological wisdom.

For example, few immunologists would deny that the induction

of persistent neutralizing antibody responses (Table 1) and cyto-

toxic T cells are beneficial to fight most viral infections. In such

cases, early signatures that various aspects of T or B cell immu-

nogenicity can be assessed in a high-throughput manner, using

a small number of genes (Vaccine Chip) or an ELISA kit that

measured protein expression (Figure 3).

But what happens in situations in which the types of immune

responses required for protection are not readily apparent or

where the full range of responses required for optimally effective

protection may be unknown? For example, in HIV infections,

although neutralizing antibodies and cytotoxic T cells are

thought to be important (Letvin, 2007), there is much interest in

ascertainingwhether there are additional mechanisms thatmight

confer protection. Here, it is interesting to consider how systems

approaches may be integrated into phase II and III clinical trials,

with a view to identifying new correlates of protection. Two

approaches to integrating systems approaches into phase II

and III trials are shown in Figure 3. Such trials typically involve

thousands of participants, and performing high-throughput anal-

yses on all would be prohibitively expensive. In one approach,

signatures of various aspects of T and B cell immunogenicity

can be established in a smaller phase I trial, and these signatures

can be incorporated into a relatively cheap and high-throughput

assay that can be used to predict immunogenicity in phase II

and III trials (Figure 3). The assumption here is that some aspect

of the T or B cell response will be protective. In a different

approach, blood samples could be collected at a few strategic

time points (e.g., days 0 and 7 after vaccination), put straight

into RNA lysis buffer, and stored for future use. Once the trial

was completed, a retrospective nested case-control study could

be performed using the stored samples in which a detailed anal-

yses of innate and adaptive responses could be performed in,

say, 50 vaccinees who acquired the disease and 50 vaccinees

who did not. The goal would be to identify signatures induced

early on that would discriminate between those who were pro-

tected by the vaccine versus those who were not. A caveat

with this approach is that one would not know whether those

vaccinees who didn’t acquire the disease were actually pro-

tected by the vaccine or simply never encountered the pathogen.

However, in many endemic areas of infection (e.g., in a rural area

where cholera is endemic and access to clean drinking water is

absent), it may be assumed that exposure to infection is high.

A potential benefit of using functional signatures of innate

immunity as correlates of protection is that they occur quite early

after vaccination compared to the development of memory

T cells and antibody responses, which can take weeks, months,

or years. Being able to determine vaccine efficacy in a short time

is useful for many reasons. The current clinical trial format is very

lengthy and costly and usually offers no insights intowhy apartic-

ular vaccine failed. As such, clinical trials represent a major rate-

limiting step in vaccine development. Having a shorter study

period increases the probability of retaining all the subjects for

the duration of the study, increasing the proportion of subjects

that are tracked from vaccination through the final time point.

In addition, measuring functional signature of vaccine-induced
innate immunity makes high-throughput screening of vaccine

candidates more feasible. The short duration of time required

to measure innate immune activation relative to the endpoints

of acquired immunity means: (1) shorter duration to analyze

each batch of vaccine candidates, (2) potentially fewer resources

and costs devoted to the early stage analysis of each vaccine

candidate, (3) quicker refinement of vaccine formulations and

delivery methods, and (4) identification of why a particular

vaccine failed (Figure 3).

Apart from lack of inducing sufficient protection, another

common reason for vaccines to fail is severe side effects. These

side effects are often associated with overactivation of certain

components of the innate immune system (Gupta et al., 1993;

Pulendran et al., 2008). Thus functional signatures of innate

immunity may be used to screen adjuvants or as cocorrelates

of protection along with parameters of acquired immunity for

complete vaccines (antigen + adjuvant). Functional signatures

may not only help in the design of protective vaccines but may

also help to limit the deleterious side effects.

Finally, systems approaches could also yield biological

insights about how vaccines work.

One area that could benefit from systems approaches is delin-

eation of the mechanisms by which adjuvants work. Although

the empiric, live attenuated vaccines contain stimuli that activate

the innate immune system and, in effect, act as their own adju-

vants, recombinant vaccines such as the Hepatitis B vaccine

need to be administered with exogenous adjuvants. In the nearly

250 years since the introduction of vaccination, although a great

variety of adjuvants have been proposed, until very recently only

alum, described by Glenny in 1926, was globally licensed for

human use (De Gregorio et al., 2008; Lindblad, 2004). However,

alum is a Th2 cell-inducing adjuvant, and does not induce

strong Th1 and CTL responses. Thus, there is an urgent need

to develop alternative and safe adjuvants that induce different

types of immune response that might be optimally effective

against different pathogens. Despite its widespread utility, until

very recently its mechanism of action has been shrouded in

mystery. It has been suggested that alum works by serving as a

depot of antigen in the body. It has also been suggested that

alum could cause necrosis in the inoculated tissue, which indi-

rectly activates DCs through danger signals in the form of host

inflammatory mediators (De Gregorio et al., 2008; Mbow

et al., 2010). The details of this mechanism are only now being

revealed. Recently it was demonstrated that alum signals via

the Nalp3 inflammasome (Eisenbarth et al., 2008; Kool et al.,

2008; Li et al., 2008). Thus, DCs or macrophages stimulated

in vitro with alum plus LPS induced IL-1b and IL-18 in a cas-

pase-1- and Nalp3-dependent manner (Eisenbarth et al., 2008;

Kool et al., 2008; Li et al., 2008; McKee et al., 2009). Despite

the convincing in vitro studies, the question of whether Nalp3 is

required for the adjuvanticity of alum remains controversial,

with some studies demonstrating abrogation of antibody

responses in Nalp3-deficient (Nlrp3�/�) mice (Eisenbarth et al.,

2008; Li et al., 2008) andother studies showing partial or no effect

(Kool et al., 2008; McKee et al., 2009). Thus, the mechanisms by

which alum induces Th2 responses are poorly understood, and

a systems biological approach (e.g., microarray analyses of

signatures in response to an alum-adjuvanted versus unadju-

vanted vaccine) is likely to be useful in providing new insights
Immunity 33, October 29, 2010 ª2010 Elsevier Inc. 523
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into themechanismof action of alum. In this context, Mosca et al.

performed an elegant study in mice to assess the molecular and

cellular signatures of vaccine adjuvants, including the squalene-

based oil-in-water emulsion MF59 (Mosca et al., 2008), which

was licensed for human use a decade ago. The molecular mech-

anism of action and the target cells of alum and MF59 are still

unknown. By combining microarray and immunofluorescence

analysis, Mosca et al. monitored the effects of the adjuvants

MF59, CpG, and alum in the mouse muscle. MF59 induced the

expression of 891 genes; in contrast, CpG and alum regulated

387 and 312 genes, respectively. Interestingly, there was a core

set of 168 genes that were modulated by all adjuvants. Although

all adjuvants promoted the recruitment of antigen-presenting

cells, MF59 triggered a more rapid influx of CD11b+ blood cells

compared with other adjuvants. Furthermore, MF59 was the

most potent inducer of genes encoding cytokines, cytokine

receptors, and adhesion molecules involved in leukocyte migra-

tion. Intriguingly, two genes identified by microarrays, JunB and

Ptx3, suggested skeletal muscle as a direct target of MF59.

Taken together, the authors’ interpretation of the data suggests

that oil-in-water emulsions are efficient human vaccine adjuvants

because they induce an early and strong immunocompetent

environment at the injection site by targeting muscle cells. In

addition, we have recently applied this approach to identifying

a novel mechanism by which adjuvants that induce Th2

responses (e.g., cysteine proteases) program DCs to stimulate

Th2 responses (Tang et al., 2010). This involves the induction of

reactive oxygen species (ROS) in DCs, which is critical for the

induction of Th2 responses (Tang et al., 2010).

These studies demonstrate the utility of systems approaches

in understanding the mechanism of action of adjuvants, and in

identifying mechanisms that contribute to their toxicity. In addi-

tion, emerging work in innate immunity is revealing the mode

of action ofmany adjuvants. Under the brand nameAS04,mono-

phosphoryl lipid A (MPL), an LPS derivative and a TLR4 ligand, is

used in combination with alum in Cervarix, GlaxoSmithKline’s

recently approved human papillomavirus vaccine (Hennessy

et al., 2010). With the growing number of adjuvants at our

disposal to mimic natural infections, we need a frame of refer-

ence as to how to use them for maximum efficacy. Turning to

the functional signatures of innate immunity induced by some

of our most successful vaccines is beginning to shed light

on this area. For example, YF-17D activates multiple TLRs,

including TLR 2, 7, 8, and 9, as well as non-TLR PRRs such as

RIG-I and MDA-5 (Querec et al., 2006, 2009), which results in

the activation of plasmacytoid DCs and myeloid DCs. Similar

approaches are being applied to understand innate responses

to other vectors such as the attenuated pox vectors modified

vaccinia virus Ankara and New York vaccinia (Guerra et al.,

2007) and baculovirus-expressed HIV virus-like particles (Buo-

naguro et al., 2008).

Systems approaches can also shed light on the mechanisms

by which vaccines induce a given type of response. As dis-

cussed above, one of the key genes in the predictive signature

of YF-17D, EIF2AK4, is known to be a critical player in the inte-

grated stress response (Kedersha and Anderson, 2007) and

regulates protein synthesis in response to changes in amino

acid amounts by phosphorylating the elongation initiation factor

2 (eIF2a) (Figure 1). Our recent data demonstrate that immuniza-
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tion of mice deficient in EIF2AK4with YF-17D results in substan-

tially diminished CD8+T cell responses (unpublished data). The

precise mechanism of this is under investigation, but this result

demonstrates that the integrated stress response plays a key

role in regulating adaptive immunity to a viral vaccine.

Finally, it is important to remember that the complex behavior

of biological systems cannot be understood by studying parts in

isolation (Germain, 2001; Ideker et al., 2001; Kitano, 2002; Weng

et al., 1999). Therefore, vaccinologists need to move beyond

merely understanding each of the parts of the immune system

in isolation to instead understand how the different parts of the

immune system interact among themselves. Indeed, a unified

model of the cellular and molecular mechanisms of vaccine-

induced protective immunity is likely to result from studying

different hierarchies of organization with the immune system.

In such a hierarchy, the cell can be considered to be the ground

level, and zooming into the cell to examine innate receptors

and signaling networks offers greater conceptual resolution. In

contrast, zooming out from the cell, allows more global views

of multicellular cooperation (e.g., between DC subsets) and the

influence of tissue microenvironments (e.g., intestine versus

lung) (Pulendran et al., 2010). In addition, the immune system,

as with all biological systems, has redundancies, feedback and

feed-forward regulation, and synergism, which all impact how

the instruction of the vaccine is processed (Kitano, 2002). For

example, combinatorial triggering of specific combinations of

TLRs results in a synergistic production of proinflammatory cyto-

kines via a mechanism dependent on TRIF and MyD88 signaling

(Napolitani et al., 2005). Consistent with this, vaccination with

nanoparticles containing particular combinations of TLR ligands

plus antigens induced a synergistic enhancement in the magni-

tude and persistence of antigen-specific memory B cells and

long-lived plasma cells (unpublished data).

Low-Input, High-Throughput, No Output Biology?
Despite the promise of systems approaches in vaccinology,

we may do well to heed the advice of Dr. Sydney Brenner:

‘‘The idea that we’ll dissect [cellular] complexity by making lots

of measurements is bound to fail.. Everyone’s hoping for

a magic computer program—experimental data, pharmacoge-

nomics data, the whole lot—and it will come out with the answer.

That’s a vague hope. Because I have to tell you, computers are

incredibly stupid! It’s better to combine human intelligence with

artificial stupidity than the other way around’’ (Davies, 2008), and

‘‘Actually, the orgy of fact extraction in which everybody is

currently engaged has, like most consumer economies, accu-

mulated a vast debt. This is a debt of theory, and some of us

are soon going to have an exciting time paying it back—with

interest, I hope’’ (Brenner, 1997). The accumulation of a sea of

data is but a small stepping stone toward real understanding

of biological systems. It is imperative to get beyond colorful

heat maps and network maps to an understanding of the func-

tional significance of the molecular signatures of vaccination.

This is a daunting challenge because of several intrinsic prob-

lems in this approach. These are discussed below.

Conceptual Problems

A major conceptual pitfall lies with the premise that changes in

the expression of genes in response to vaccination may neces-

sarily be functionally relevant for generating the immune
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response to that vaccine. There are many examples where

genes that are modulated in response are of no consequence

to the biological response to that stimulus because evolution

has not had a reason for silencing those genes. Indeed, it is

well recognized that gene coexpression only corresponds to

causality in very limited cases (Bansal et al., 2007; Schadt

et al., 2005). The challenge is to identify true causal relationships

among the cooccurring events. One solution is to borrow knowl-

edge from predefined gene modules or pathways. If multiple

geneswithin amodule are coordinately regulated by the vaccine,

then the likelihood that this module is functionally relevant

becomes much higher. Another approach is to combine multiple

data types. As Chen et al. (Chen et al., 2008) demonstrated,

a macrophage-enriched metabolic network, derived by inte-

grating genotyping data and expression data, was causal of

obesity traits, whereas each data type alone could not deliver

the predictive power. We should be reminded that the current

measurements are still a thin slice of immense biological

complexity; microarray data, even with a large sample size,

may fail to reach any statistical significance (Dixon et al.,

2007). The general question is: how much data, what data, at

what resolution, at what scale, are needed to explain the immu-

nological phenotypes? This may only be addressed in each indi-

vidual case through trials and errors. Finally, the results of the

analysis have to be validated by functional data via proven tech-

niques, say, gene perturbation or deficient mice. As the study

design is closely coupled with computational analysis and

modeling, systems biology is best done in an environment where

biologists and computational scientists interact closely.

A second conceptual problem is the premise that we can

deduce mechanistic insights about how the vaccine-induced

immune responses by looking at changes in the expression of

genes only in cells isolated from the blood. This is a significant

problem because immune response to local vaccinations will be

initiated in the draining lymph nodes. However, with many

vaccines, suchas live viral or bacterial vectors, there is a transient,

systemic replicationof the vector and, subsequently, a direct acti-

vation of blood leukcocytes by the it. This is likely to produce the

profile of gene expression changes observed in the draining

lymph nodes, which serves as a surrogate for immunogenicity.

Even in the case of nonreplicating vaccines such as the inacti-

vated influenzavaccine, our result results demonstrate that signa-

tures of immunogenicity can be ascertained in the blood (unpub-

lished data). An additional problem is that, for many vaccines that

induce mucosal immunity, gene expression signatures in the

blood many not predict the strength, quality, and duration of

mucosal immunity. Sampling mucosal tissues in human vacci-

nees is wrought with challenges. Clearly further studies are

necessary to ascertain the extent to which immunogenicity of

mucosal vaccines can be ascertained from the blood.

Technical Problems

One of the key technical issues is that gene expression signa-

tures are prone to artifacts. Since the early studies of cancer

expression microarrays, questions have been raised about how

robust the gene signatures are (Ein-Dor et al., 2006). Recently,

emphasis has been placed on pathway and network analyses

because they incorporate prior knowledge into data analysis

and are less prone to spurious errors than analyses of individual

genes (Chuang et al., 2007; Dinu et al., 2009). This is particularly
relevant to immunological studies where signals are often diluted

by cell heterogeneity (Haining and Wherry, 2010). In addition,

signatures must be validated with additional techniques and

independent samples.

Second, when profiling PBMCs, one is looking at signatures

from a mixed bag of cells. Therefore, the extent to which the

changes in gene expression reflect alterations in the cellular

composition of the blood versus de novo induction of gene

expression remains uncertain. One solution to this problem is

to FACS sort subpopulations of cells and then to evaluate

expression profiles in individual cell types. However, this

approach is rather laborious and expensive. An alternative

approach is to devise computational strategies for assessing

cell type-specific gene expression profiles. Recently, Shen-Orr

et al. (Shen-Orr et al., 2010) have devised such an approach

using microarray data and relative cell type frequencies. First

they validated their approach using predesigned mixtures of

cells, and then they applied it to whole-blood gene expression

datasets from stable posttransplant kidney transplant recipients

and those experiencing acute rejection.

A third challenge lies in the enormous genetic and environ-

mental heterogeneity in human populations and the impact

that such heterogeneity may have on vaccine-induced immunity.

Therefore, future studies should strive to conduct such research

in populations that are uniform with respect to age, gender,

ethnicity, and immune status. Furthermore, studies that aim to

compare vaccine-induced immunity between different popula-

tions (e.g., frail elderly versus healthy adults) are likely to yield

many insights into mechanisms that contribute to impaired

immunity in given populations.

Fourth, a major challenge concerns data management and

integration of the enormous volume of data generated. The

timely sharing of these data is important to the research commu-

nity. A dedicated database service for vaccine-related data, akin

to WormBase (Schwarz et al., 2006) and TB database (Reddy

et al., 2009), should be created as soon as possible. Public data-

bases for immunology, including InnateDB (Lynn et al., 2008)

and Immgen.org (Heng and Painter, 2008), have been well

covered by recent reviews (Gardy et al., 2009; Tong and Ren,

2009). In-house databases often become a necessity for high-

throughput projects. Integration of multiple data types is usually

driven by the specific modeling approach, for instance by naive

Bayesian methods (Huttenhower et al., 2009) or by custom

algorithms, or combined by biomolecular concepts (Joyce and

Palsson, 2006). For example, transcription factor binding data

and gene expression are combined under frameworks of tran-

scriptional regulation; metabolites and enzyme expression are

combined in metabolic networks. Broader and more definitive

immune parameters are desired (Fauci et al., 2008).

Cultural Problems

Finally, the successful application of systems approaches to

vaccinology requires a close transdisciplinary collaboration

between biologists and computational scientists. It is critical

that such individuals engage in active dialog on a daily basis

to combine rigorous bioinformatics analyses of the data with

biological insights and intuition. Such intimate collaborations

could even take place within a single laboratory where, for

example, post-docs trained in bioinformatics and biology

interact closely.
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Figure 4. A Framework for Systems Vaccinology
Systems biology approaches applied to clinical trials can
lead to the generation of new hypotheses that can be
tested and ultimately lead to developing better vaccines.
For example, immune responses to vaccination in clinical
trials can be profiled in exquisite depth with technologies
such as microarrays, deep sequencing, and proteomics.
The high-throughput data generated can be mined using
bioinformatics tools and used to create hypotheses about
the biological mechanisms underlying vaccine-induced
immunity. Such hypotheses can then be testedwith animal
models or in vitro human systems. The insights gained
from experimentation can then guide the design and
development of new vaccines. Such a framework seeks
to bridge the so-called gaps between clinical trials and
discovery-based science, between human immunology
and mouse immunology, and between translational and
basic science and offers a seamless continuum of scien-
tific discovery and vaccine invention.
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A Framework for Systems Vaccinology
At the World Economic Forum’s annual meeting in Davos this

year, Bill Gates pledged $10 billion for vaccines over the next

decade and said that he hoped that the coming 10 years

would be the decade of the vaccine. His words symbolize

the uniquemoment we face today in our millennial war with path-

ogens. For the first time, we have begun to understand the

mechanisms by which highly successful vaccines mediate

protective immunity and to begin to harness such insights

in designing new vaccines against global pandemics. Systems

biology promises to offer a new paradigm in vaccinology.

Recently, the National Institute of Allergy and Infectious Dis-

eases (NIAID) initiated a new nationwide initiative to establish

a consortium of human immune profiling research centers

(National Institute of Allergy and Infectious Diseases, 2010).

The purpose of these centers—which together will receive

funding up to $100 million over 5 years—is to characterize the

human immune system under normal conditions and to under-

stand how it changes following infection or vaccination to

specific viruses and bacteria. Researchers will use the tools of

systems biology to follow the global architecture of the immune

response to vaccination or infections in humans and integrate

information about an individual’s genes, proteins, and metabolic

components that are perturbed by vaccination or infection.

Such studies will be performed in diverse populations with

respect to age (including the elderly and children), immune

status (including people with autoimmune diseases such as

lupus and transplant patients), gender, and ethnicity. In addition,

the initiative will provide support for centralized infrastructure to

collect, characterize, and store the human samples; for bioinfor-

matic capacity to analyze the large and complex data sets that

will be generated; and for the discovery and development of

new immune response-monitoring tools and sample-sparing
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assays. The results of this initiative are likely

to have a major impact on vaccinology and

generate an unprecedented volume of data on

immune responses in humans. However, we

must remember Dr. Brenner’s admonishment

and strive to transcend data and discover

knowledge and ultimately understanding. The

generation of high-throughput data represents
but a stepping stone toward understanding. An essential aspect

of this is to integrate mechanistic studies involving models, both

animal and human, (e.g., knockout mice, transgenic mice, siRNA

knock down of genes in humans cells in vitro) that can elegantly

validate the functions of genes and proteins picked up in the

human immune-profiling studies (Figure 4). Therefore, data

generated in clinical trials can be mined using bioinformatics

tools and used to generate biological hypotheses, which can

then be tested with animal models or in vitro systems. The

insights gained from experimentation will then guide the design

and development of new vaccines (Figure 4). Such a framework

seeks to bridge the so-called gaps between clinical trials and

discovery-based science, between human immunology and

mouse immunology, and between translational and basic

science and offers a seamless continuum of scientific discovery

and vaccine invention. That would be emblematic of 21st century

vaccinology!
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